Longterm Wiki

AI Scaling Laws

scaling-laws (E273)
← Back to pagePath: /knowledge-base/models/scaling-laws/
Page Metadata
{
  "id": "scaling-laws",
  "numericId": null,
  "path": "/knowledge-base/models/scaling-laws/",
  "filePath": "knowledge-base/models/scaling-laws.mdx",
  "title": "AI Scaling Laws",
  "quality": null,
  "importance": null,
  "contentFormat": "article",
  "tractability": null,
  "neglectedness": null,
  "uncertainty": null,
  "causalLevel": null,
  "lastUpdated": "2026-02-09",
  "llmSummary": null,
  "structuredSummary": null,
  "description": "Empirical relationships between compute, data, parameters, and AI performance",
  "ratings": null,
  "category": "models",
  "subcategory": null,
  "clusters": [
    "ai-safety"
  ],
  "metrics": {
    "wordCount": 7,
    "tableCount": 0,
    "diagramCount": 0,
    "internalLinks": 0,
    "externalLinks": 0,
    "footnoteCount": 0,
    "bulletRatio": 0,
    "sectionCount": 0,
    "hasOverview": false,
    "structuralScore": 2
  },
  "suggestedQuality": 13,
  "updateFrequency": null,
  "evergreen": true,
  "wordCount": 7,
  "unconvertedLinks": [],
  "unconvertedLinkCount": 0,
  "convertedLinkCount": 0,
  "backlinkCount": 2,
  "redundancy": {
    "maxSimilarity": 0,
    "similarPages": []
  }
}
Entity Data
{
  "id": "scaling-laws",
  "type": "concept",
  "title": "AI Scaling Laws",
  "description": "Empirical relationships between model size, compute, data, and AI performance that have driven recent AI progress.",
  "tags": [
    "capabilities",
    "research",
    "forecasting"
  ],
  "relatedEntries": [
    {
      "id": "epoch-ai",
      "type": "organization"
    }
  ],
  "sources": [],
  "lastUpdated": "2025-12",
  "customFields": []
}
Canonical Facts (0)

No facts for this entity

External Links
{
  "lesswrong": "https://www.lesswrong.com/tag/scaling-laws",
  "wikipedia": "https://en.wikipedia.org/wiki/Neural_scaling_law"
}
Backlinks (2)
idtitletyperelationship
data-constraintsAI Training Data Constraintsconcept
epoch-aiEpoch AIorganization
Frontmatter
{
  "title": "AI Scaling Laws",
  "description": "Empirical relationships between compute, data, parameters, and AI performance",
  "sidebar": {
    "order": 50
  },
  "quality": 0,
  "importance": 0,
  "lastEdited": "2026-02-09",
  "entityType": "model"
}
Raw MDX Source
---
title: "AI Scaling Laws"
description: "Empirical relationships between compute, data, parameters, and AI performance"
sidebar:
  order: 50
quality: 0
importance: 0
lastEdited: "2026-02-09"
entityType: model
---

This page is a stub. Content needed.