AI Scaling Laws
scaling-laws (E273)← Back to pagePath: /knowledge-base/models/scaling-laws/
Page Metadata
{
"id": "scaling-laws",
"numericId": null,
"path": "/knowledge-base/models/scaling-laws/",
"filePath": "knowledge-base/models/scaling-laws.mdx",
"title": "AI Scaling Laws",
"quality": null,
"importance": null,
"contentFormat": "article",
"tractability": null,
"neglectedness": null,
"uncertainty": null,
"causalLevel": null,
"lastUpdated": "2026-02-09",
"llmSummary": null,
"structuredSummary": null,
"description": "Empirical relationships between compute, data, parameters, and AI performance",
"ratings": null,
"category": "models",
"subcategory": null,
"clusters": [
"ai-safety"
],
"metrics": {
"wordCount": 7,
"tableCount": 0,
"diagramCount": 0,
"internalLinks": 0,
"externalLinks": 0,
"footnoteCount": 0,
"bulletRatio": 0,
"sectionCount": 0,
"hasOverview": false,
"structuralScore": 2
},
"suggestedQuality": 13,
"updateFrequency": null,
"evergreen": true,
"wordCount": 7,
"unconvertedLinks": [],
"unconvertedLinkCount": 0,
"convertedLinkCount": 0,
"backlinkCount": 2,
"redundancy": {
"maxSimilarity": 0,
"similarPages": []
}
}Entity Data
{
"id": "scaling-laws",
"type": "concept",
"title": "AI Scaling Laws",
"description": "Empirical relationships between model size, compute, data, and AI performance that have driven recent AI progress.",
"tags": [
"capabilities",
"research",
"forecasting"
],
"relatedEntries": [
{
"id": "epoch-ai",
"type": "organization"
}
],
"sources": [],
"lastUpdated": "2025-12",
"customFields": []
}Canonical Facts (0)
No facts for this entity
External Links
{
"lesswrong": "https://www.lesswrong.com/tag/scaling-laws",
"wikipedia": "https://en.wikipedia.org/wiki/Neural_scaling_law"
}Backlinks (2)
| id | title | type | relationship |
|---|---|---|---|
| data-constraints | AI Training Data Constraints | concept | — |
| epoch-ai | Epoch AI | organization | — |
Frontmatter
{
"title": "AI Scaling Laws",
"description": "Empirical relationships between compute, data, parameters, and AI performance",
"sidebar": {
"order": 50
},
"quality": 0,
"importance": 0,
"lastEdited": "2026-02-09",
"entityType": "model"
}Raw MDX Source
--- title: "AI Scaling Laws" description: "Empirical relationships between compute, data, parameters, and AI performance" sidebar: order: 50 quality: 0 importance: 0 lastEdited: "2026-02-09" entityType: model --- This page is a stub. Content needed.