Ultimate Scenarios
scenarios-overview (E674)← Back to pagePath: /ai-transition-model/scenarios-overview/
Page Metadata
{
"id": "scenarios-overview",
"numericId": "E674",
"path": "/ai-transition-model/scenarios-overview/",
"filePath": "ai-transition-model/scenarios-overview.mdx",
"title": "Ultimate Scenarios",
"quality": null,
"importance": null,
"contentFormat": "article",
"tractability": null,
"neglectedness": null,
"uncertainty": null,
"causalLevel": null,
"lastUpdated": "2026-01-04",
"llmSummary": null,
"structuredSummary": null,
"description": "The intermediate pathways connecting root factors to ultimate outcomes—AI Takeover, Human-Caused Catastrophe, and Long-term Lock-in.",
"ratings": null,
"category": "ai-transition-model",
"subcategory": "scenarios",
"clusters": [
"ai-safety"
],
"metrics": {
"wordCount": 553,
"tableCount": 1,
"diagramCount": 0,
"internalLinks": 17,
"externalLinks": 0,
"footnoteCount": 0,
"bulletRatio": 0.42,
"sectionCount": 13,
"hasOverview": false,
"structuralScore": 5
},
"suggestedQuality": 33,
"updateFrequency": null,
"evergreen": true,
"wordCount": 553,
"unconvertedLinks": [],
"unconvertedLinkCount": 0,
"convertedLinkCount": 0,
"backlinkCount": 0,
"redundancy": {
"maxSimilarity": 10,
"similarPages": [
{
"id": "scheming-likelihood-model",
"title": "Scheming Likelihood Assessment",
"path": "/knowledge-base/models/scheming-likelihood-model/",
"similarity": 10
}
]
}
}Entity Data
No entity found for "scenarios-overview"
Canonical Facts (0)
No facts for this entity
External Links
No external links
Backlinks (0)
No backlinks
Frontmatter
{
"numericId": "E674",
"title": "Ultimate Scenarios",
"description": "The intermediate pathways connecting root factors to ultimate outcomes—AI Takeover, Human-Caused Catastrophe, and Long-term Lock-in.",
"sidebar": {
"label": "Overview",
"order": 0
},
"lastEdited": "2026-01-04",
"subcategory": "scenarios"
}Raw MDX Source
---
numericId: E674
title: Ultimate Scenarios
description: The intermediate pathways connecting root factors to ultimate outcomes—AI Takeover, Human-Caused Catastrophe, and Long-term Lock-in.
sidebar:
label: Overview
order: 0
lastEdited: "2026-01-04"
subcategory: scenarios
---
import {ScenariosTable, FullModelDiagram, EntityLink} from '@components/wiki';
Ultimate Scenarios are the intermediate pathways that connect <EntityLink id="E667">root factors</EntityLink> to <EntityLink id="E669">ultimate outcomes</EntityLink>. They describe *how* parameter changes lead to catastrophe (or success)—the specific mechanisms and pathways that determine what kind of future we get.
The <EntityLink id="__index__/ai-transition-model">AI Transition Model</EntityLink> uses **three main ultimate scenarios**:
1. **<EntityLink id="E670">AI Takeover</EntityLink>** — AI gains decisive control
2. **<EntityLink id="E671">Human-Caused Catastrophe</EntityLink>** — Humans use AI for mass harm
3. **<EntityLink id="E673">Long-term Lock-in</EntityLink>** — Permanent entrenchment of values/power
Each ultimate scenario has sub-variants that describe more specific pathways (e.g., "rapid" vs "gradual" AI takeover, "state" vs "rogue actor" catastrophe).
---
## The Three-Layer Model
<FullModelDiagram />
**Color coding:**
- **Red**: Ultimate negative outcome (<EntityLink id="E130">existential catastrophe</EntityLink>)
- **Green**: Ultimate trajectory measure (could be good or bad)
- **Pink**: Negative ultimate scenarios (catastrophes)
- **Orange**: Symmetric ultimate scenario (could entrench good or bad values)
---
## Ultimate Scenarios Summary
<ScenariosTable />
---
## How Ultimate Scenarios Differ from Other Concepts
| Concept | What It Is | Example |
|---------|-----------|---------|
| **Root Factors** | Aggregate variables that shape scenarios | "Misalignment Potential" |
| **Parameters** | Specific measurable factors | "<EntityLink id="E20">Alignment Robustness</EntityLink>" |
| **Risks** | Things that could go wrong | "<EntityLink id="E93">Deceptive Alignment</EntityLink>" |
| **Ultimate Scenarios** | Intermediate pathways connecting factors to outcomes | "AI Takeover" |
| **Ultimate Outcomes** | High-level goals we care about | "Existential Catastrophe", "<EntityLink id="E194">Long-term Trajectory</EntityLink>" |
**Key distinction**: A *risk* like "deceptive alignment" is a mechanism that could happen. An *ultimate scenario* like "AI Takeover" is the outcome that results if such mechanisms play out. Multiple risks can contribute to a single ultimate scenario.
---
## Why This Layer Matters
### 1. Clarifies Causal Chains
Without this layer, the connection between "Misalignment Potential increasing" and "Existential Catastrophe increasing" is abstract. Ultimate scenarios show the specific pathway: alignment fails → AI develops misaligned goals → AI takes over → catastrophe.
### 2. Enables Different Intervention Strategies
Different ultimate scenarios require different interventions:
- **AI Takeover**: Technical alignment, capability restrictions
- **Human-Caused Catastrophe**: <EntityLink id="E171">International coordination</EntityLink>, misuse prevention
- **Long-term <EntityLink id="E189">Lock-in</EntityLink>**: Power distribution, institutional design
### 3. Supports Scenario Planning
Ultimate scenarios map directly onto scenarios that organizations can plan for. Rather than asking "what if Existential Catastrophe increases?", planners can ask "what if we're heading toward a Human-Caused Catastrophe?"
### 4. Connects to Existing Threat Models
Each ultimate scenario corresponds to threat models discussed in the AI safety literature:
- <EntityLink id="E54">Carlsmith's six-premise argument</EntityLink> → AI Takeover scenarios
- Christiano's "What Failure Looks Like" → <EntityLink id="E619">Gradual AI Takeover</EntityLink>
- Ord's "The Precipice" risk categories → Multiple ultimate scenarios
- Kasirzadeh's decisive vs. accumulative → Rapid vs. Gradual takeover
---
## Using This Section
### For Analysts
- Map specific risks to the ultimate scenarios they could produce
- Estimate which ultimate scenarios are most likely given current parameter trends
- Identify which parameters to prioritize based on which ultimate scenarios concern you most
### For Policymakers
- Design interventions targeted at preventing specific ultimate scenarios
- Coordinate across domains (a single ultimate scenario may require multiple types of intervention)
- Track early warning signs for each ultimate scenario
### For Researchers
- Use ultimate scenarios to frame research priorities
- Connect technical work to concrete scenarios it addresses
- Identify gaps in our understanding of specific pathways
---
## Related Sections
- <EntityLink id="E667">Root Factors</EntityLink> — The parameter groupings that feed into ultimate scenarios
- <EntityLink id="E669">Ultimate Outcomes</EntityLink> — The high-level goals ultimate scenarios affect
- <EntityLink id="__index__/ai-transition-model">Interactive Model</EntityLink> — Full interactive visualization
- Models — Analytical frameworks for understanding pathways