QualityAdequateQuality: 59/100Human-assigned rating of overall page quality, considering depth, accuracy, and completeness.Structure suggests 93
74
ImportanceHighImportance: 74/100How central this topic is to AI safety. Higher scores mean greater relevance to understanding or mitigating AI risk.
14
Structure14/15Structure: 14/15Automated score based on measurable content features.Word count2/2Tables3/3Diagrams1/2Internal links2/2Citations3/3Prose ratio2/2Overview section1/1
16TablesData tables in the page1DiagramsCharts and visual diagrams41Internal LinksLinks to other wiki pages0FootnotesFootnote citations [^N] with sources23External LinksMarkdown links to outside URLs%14%Bullet RatioPercentage of content in bullet lists
Comprehensive synthesis of AGI timeline forecasts showing dramatic acceleration: expert median dropped from 2061 (2018) to 2047 (2023), Metaculus from 50 years to 5 years since 2020, with current predictions clustering around 2027-2045 median (50% probability). Aggregates 9,300+ predictions across expert surveys, prediction markets, and lab leader statements, documenting key uncertainties around scaling limits, definitions, and technical bottlenecks.
Issues2
QualityRated 59 but structure suggests 93 (underrated by 34 points)
Links12 links could use <R> components
AGI Timeline
Concept
AGI Timeline
Comprehensive synthesis of AGI timeline forecasts showing dramatic acceleration: expert median dropped from 2061 (2018) to 2047 (2023), Metaculus from 50 years to 5 years since 2020, with current predictions clustering around 2027-2045 median (50% probability). Aggregates 9,300+ predictions across expert surveys, prediction markets, and lab leader statements, documenting key uncertainties around scaling limits, definitions, and technical bottlenecks.
Prediction Markets (AI Forecasting)ApproachPrediction Markets (AI Forecasting)Prediction markets achieve Brier scores of 0.16-0.24 (15-25% better than polls) by aggregating dispersed information through financial incentives, with platforms handling $1-3B annually. For AI saf...Quality: 56/100
People
Sam AltmanPersonSam AltmanComprehensive biographical profile of Sam Altman documenting his role as OpenAI CEO, timeline predictions (AGI within presidential term, superintelligence in "few thousand days"), and controversies...Quality: 40/100Dario AmodeiPersonDario AmodeiComprehensive biographical profile of Anthropic CEO Dario Amodei documenting his 'race to the top' philosophy, 10-25% catastrophic risk estimate, 2026-2030 AGI timeline, and Constitutional AI appro...Quality: 41/100
Organizations
MetaculusOrganizationMetaculusMetaculus is a reputation-based forecasting platform with 1M+ predictions showing AGI probability at 25% by 2027 and 50% by 2031 (down from 50 years away in 2020). Analysis finds good short-term ca...Quality: 50/100AI ImpactsOrganizationAI ImpactsAI Impacts is a research organization that conducts empirical analysis of AI timelines and risks through surveys and historical trend analysis, contributing valuable data to AI safety discourse. Wh...Quality: 53/100
Prediction MarketsApproachPrediction Markets (AI Forecasting)Prediction markets achieve Brier scores of 0.16-0.24 (15-25% better than polls) by aggregating dispersed information through financial incentives, with platforms handling $1-3B annually. For AI saf...Quality: 56/100
2027-2031 median
Metaculus forecasters predict median of November 2027 (1,700+ forecasters)
Lab Leader Estimates
2026-2029
Sam AltmanPersonSam AltmanComprehensive biographical profile of Sam Altman documenting his role as OpenAI CEO, timeline predictions (AGI within presidential term, superintelligence in "few thousand days"), and controversies...Quality: 40/100, Dario AmodeiPersonDario AmodeiComprehensive biographical profile of Anthropic CEO Dario Amodei documenting his 'race to the top' philosophy, 10-25% catastrophic risk estimate, 2026-2030 AGI timeline, and Constitutional AI appro...Quality: 41/100, and Demis HassabisPersonDemis HassabisComprehensive biographical profile of Demis Hassabis documenting his evolution from chess prodigy to DeepMind CEO, with detailed timeline of technical achievements (AlphaGo, AlphaFold, Gemini) and ...Quality: 45/100 converge on late 2020s
Timeline Trend
Rapidly shortening
Expert median dropped from 2061 (2018) → 2059 (2022) → 2047 (2023); MetaculusOrganizationMetaculusMetaculus is a reputation-based forecasting platform with 1M+ predictions showing AGI probability at 25% by 2027 and 50% by 2031 (down from 50 years away in 2020). Analysis finds good short-term ca...Quality: 50/100 dropped from 50 years to 5 years since 2020
Uncertainty Range
Very high (±15-20 years)
80% confidence intervals span 2026-2045+ across forecasts
Definition Sensitivity
High
Different AGI definitions shift predictions by 10-20 years
Confidence Level
Low-Medium
Expert surveys show framing effects of 15+ years; historical predictions consistently too pessimistic
AGI timeline predictions represent attempts to forecast when artificial intelligence will match or exceed human cognitive abilities across all domains. Current expert consensus suggests a 50% probability of AGI developmentProjectAGI DevelopmentComprehensive synthesis of AGI timeline forecasts showing dramatic compression: Metaculus aggregates predict 25% probability by 2027 and 50% by 2031 (down from 50-year median in 2020), with industr...Quality: 52/100 between 2040-2050, though estimates vary widely based on AGI definitions and measurement criteria.
Recent surveys show accelerating timelines compared to historical predictions. The 2023 AI ImpactsOrganizationAI ImpactsAI Impacts is a research organization that conducts empirical analysis of AI timelines and risks through surveys and historical trend analysis, contributing valuable data to AI safety discourse. Wh...Quality: 53/100 survey↗🔗 web★★★☆☆AI Impacts2023 AI Impacts surveySource ↗ found median expert predictions of 2045 for "High-Level Machine Intelligence," while Metaculus prediction markets↗🔗 web★★★☆☆MetaculusMetaculus prediction marketsSource ↗ aggregate to approximately 2040-2045. However, significant uncertainty remains around capability thresholds, measurement methodologies, and potential discontinuous progress.
AGI Timeline Factors
Loading diagram...
AGI Timeline Risk Assessment
Factor
Assessment
Timeline Impact
Source
Expert Survey Median
2040-2050
Baseline estimate
AI Impacts 2023↗🔗 web★★★☆☆AI ImpactsAI Impacts 2023risk-interactionscompounding-effectssystems-thinkingprobability+1Source ↗
Prediction Market Aggregate
2040-2045
Market consensus
Metaculus↗🔗 web★★★☆☆MetaculusMetaculusMetaculus is an online forecasting platform that allows users to predict future events and trends across areas like AI, biosecurity, and climate change. It provides probabilisti...biosecurityprioritizationworldviewstrategy+1Source ↗
Epoch AI↗🔗 web★★★★☆Epoch AIEpoch AIEpoch AI provides comprehensive data and insights on AI model scaling, tracking computational performance, training compute, and model developments across various domains.capabilitiestrainingcomputeprioritization+1Source ↗
Expert timelines have consistently shortened over the past decade, with dramatic acceleration since 2022:
Year
Expert Median (HLMI)
Metaculus Median
Change from Previous
2018
2061
2070+
Baseline
2022
2059-2060
2055
-2 years
2023
2045-2047
2040
-13 to -15 years
2024
≈2040
2035
-5 years
2025
≈2035
2030
-5 years
2026
Varied
Nov 2027
-3 years
The 80,000 Hours analysis notes that "in four years, the mean estimate on Metaculus for when AGI will be developed has plummeted from 50 years to five years." Historical expert predictions have consistently been too pessimistic—in 2022, researchers thought AI wouldn't write simple Python code until ~2027, but AI met that threshold by 2023-2024.
Leading AI researchers↗🔗 web★★★★☆AnthropicLeading AI researchersSource ↗ increasingly cite rapid scaling of language modelsCapabilityLarge Language ModelsComprehensive analysis of LLM capabilities showing rapid progress from GPT-2 (1.5B parameters, 2019) to o3 (87.5% on ARC-AGI vs ~85% human baseline, 2024), with training costs growing 2.4x annually...Quality: 60/100 and emergent capabilities as evidence for shorter timelines.
Dramatic shortening: Metaculus dropped from 50 years to 5 years median since 2020
Volatility spikes following major capability announcements (GPT-4, Claude 3, o1, o3)
Shorter timelines in technical communities vs. academic surveys (10-15 year gap)
Definition sensitivity with different AGI operationalizations varying by 10-20 years
Lab Leader Statements
Industry Timeline Claims (Updated January 2026)
Organization
Leader
Claimed Timeline
Key Statement
Source
OpenAIOrganizationOpenAIComprehensive organizational profile of OpenAI documenting evolution from 2015 non-profit to commercial AGI developer, with detailed analysis of governance crisis, safety researcher exodus (75% of ...
Sam Altman
2025-2028
"We are now confident we know how to build AGI"; 2026 models will "amaze us"
AnthropicOrganizationAnthropicComprehensive profile of Anthropic, founded in 2021 by seven former OpenAI researchers (Dario and Daniela Amodei, Chris Olah, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish) with early funding...
Dario Amodei
2026-2027
"AI may surpass humans in most tasks by 2027"; "rapidly running out of convincing blockers"
DeepMindOrganizationGoogle DeepMindComprehensive overview of DeepMind's history, achievements (AlphaGo, AlphaFold with 200M+ protein structures), and 2023 merger with Google Brain. Documents racing dynamics with OpenAI and new Front...Quality: 37/100
DeepMindOrganizationGoogle DeepMindComprehensive overview of DeepMind's history, achievements (AlphaGo, AlphaFold with 200M+ protein structures), and 2023 merger with Google Brain. Documents racing dynamics with OpenAI and new Front...Quality: 37/100
Reasoning capabilitiesCapabilityReasoning and PlanningComprehensive survey tracking reasoning model progress from 2022 CoT to late 2025, documenting dramatic capability gains (GPT-5.2: 100% AIME, 52.9% ARC-AGI-2, 40.3% FrontierMath) alongside critical...Quality: 65/100: Current models struggle with complex multi-step reasoning
Long-horizon planningCapabilityLong-Horizon Autonomous TasksMETR research shows AI task completion horizons doubling every 7 months (accelerated to 4 months in 2024-2025), with current frontier models achieving ~1 hour autonomous operation at 50% success; C...Quality: 65/100: Limited ability for extended autonomous operation
Robustness: Brittleness to distribution shifts and adversarial examples
Sample efficiency: Still require massive training data compared to humans
Scaling Constraints
Constraint Type
Impact on Timeline
Mitigation Strategies
Compute hardwareAi Transition Model MetricCompute & HardwareComprehensive metrics tracking finds training compute grows 4-5x annually (30+ models at 10²⁵ FLOP by mid-2025), algorithmic efficiency doubles every 8 months (95% CI: 5-14), and NVIDIA holds 80-90...
Multi-modal integration: Vision, text, and code in single models
Tool useCapabilityTool Use and Computer UseTool use capabilities achieved superhuman computer control in late 2025 (OSAgent: 76.26% vs 72% human baseline) and near-human coding (Claude Opus 4.5: 80.9% SWE-bench Verified), but prompt injecti...Quality: 67/100: Effective API calls and workflow automation
Emergent reasoning: Chain-of-thought and constitutional approaches
Scientific researchCapabilityScientific Research CapabilitiesAI scientific research capabilities have achieved performance exceeding human experts in specific domains (AlphaFold's 214M protein structures, GNoME's 2.2M materials in 17 days versus estimated 80...: Automated hypothesis generation and testing
Projection Methods
Approach
2030 Prediction
Methodology
Limitations
Scaling laws
85% human performance
Extrapolate compute trends
May hit diminishing returns
Expert elicitation
60% probability
Survey aggregation
Bias and overconfidence
Benchmark tracking
90% on specific tasks
Performance trajectory
Narrow evaluation
Economic modeling
40% job automation
Labor substitution
Deployment friction
Disagreement and Cruxes
Major Points of Contention
Timeline Pessimists (2050+) argue:
Current paradigms (transformers, scaling) will hit fundamental limits
Alignment difficulty will require extensive safety research before deployment
Economic and regulatory barriers will slow deployment
Coordination mechanismsAi Transition Model ParameterInternational CoordinationThis page contains only a React component placeholder with no actual content rendered. Cannot assess importance or quality without substantive text.: Preventing dangerous racing dynamics
Policy Relevance
Timeline uncertainty affects regulation approachesCruxGovernment Regulation vs Industry Self-GovernanceComprehensive comparison of government regulation versus industry self-governance for AI, documenting that US federal AI regulations doubled to 59 in 2024 while industry lobbying surged 141% to 648...Quality: 54/100:
Precautionary principle: Plan for shortest reasonable timelines
Adaptive governance: Build flexible frameworks for multiple scenarios
Research prioritization: Balance capability and safety advancement
Sources & Resources
Primary Research
Category
Source
Key Contribution
Expert Surveys
AI Impacts 2023 Survey↗🔗 web★★★☆☆AI ImpactsAI Impacts 2023risk-interactionscompounding-effectssystems-thinkingprobability+1Source ↗
Largest expert survey (2,778 respondents)
Prediction Markets
Metaculus AGI Questions↗🔗 web★★★☆☆MetaculusMetaculusMetaculus is an online forecasting platform that allows users to predict future events and trends across areas like AI, biosecurity, and climate change. It provides probabilisti...biosecurityprioritizationworldviewstrategy+1Source ↗
Continuous probability tracking (1,700+ forecasters)
Technical Analysis
Epoch AI Scaling Reports↗🔗 web★★★★☆Epoch AIEpoch AIEpoch AI provides comprehensive data and insights on AI model scaling, tracking computational performance, training compute, and model developments across various domains.capabilitiestrainingcomputeprioritization+1Source ↗
AI Impacts↗🔗 web★★★☆☆AI ImpactsAI Impacts 2023risk-interactionscompounding-effectssystems-thinkingprobability+1Source ↗
Expert surveys and trend analysis
Annual ESPAI survey reports
Metaculus↗🔗 web★★★☆☆MetaculusMetaculusMetaculus is an online forecasting platform that allows users to predict future events and trends across areas like AI, biosecurity, and climate change. It provides probabilisti...biosecurityprioritizationworldviewstrategy+1Source ↗
Prediction markets
AGI timeline questions, AGI Horizons tournament
Epoch AIOrganizationEpoch AIEpoch AI is a research organization dedicated to producing rigorous, data-driven forecasts and analysis about artificial intelligence progress, with particular focus on compute trends, training dat...
Compute trends and scaling laws
Technical reports, training cost projections
Future of Humanity Institute↗🔗 web★★★★☆Future of Humanity Institute**Future of Humanity Institute**talentfield-buildingcareer-transitionsrisk-interactions+1Source ↗
Scaling debates: See scaling law discussionCruxIs Scaling All You Need?Comprehensive survey of the 2024-2025 scaling debate, documenting the shift from pure pretraining to 'scaling-plus' approaches after o3 achieved 87.5% on ARC-AGI-1 but GPT-5 faced 2-year delays. Ex...Quality: 42/100
Capability analysis: Review core capabilities development
Timeline uncertainty: Explore forecasting methodologyConceptAGI TimelineComprehensive synthesis of AGI timeline forecasts showing dramatic acceleration: expert median dropped from 2061 (2018) to 2047 (2023), Metaculus from 50 years to 5 years since 2020, with current p...Quality: 59/100
AI-Augmented ForecastingApproachAI-Augmented ForecastingAI-augmented forecasting combines AI computational strengths with human judgment, achieving 5-15% Brier score improvements and 50-200x cost reductions compared to human-only forecasting. However, A...Quality: 54/100
Risks
Emergent CapabilitiesRiskEmergent CapabilitiesEmergent capabilities—abilities appearing suddenly at scale without explicit training—pose high unpredictability risks. Wei et al. documented 137 emergent abilities; recent models show step-functio...Quality: 61/100
People
Sam AltmanPersonSam AltmanComprehensive biographical profile of Sam Altman documenting his role as OpenAI CEO, timeline predictions (AGI within presidential term, superintelligence in "few thousand days"), and controversies...Quality: 40/100
Labs
Google DeepMindOrganizationGoogle DeepMindComprehensive overview of DeepMind's history, achievements (AlphaGo, AlphaFold with 200M+ protein structures), and 2023 merger with Google Brain. Documents racing dynamics with OpenAI and new Front...Quality: 37/100Safe Superintelligence Inc.OrganizationSafe Superintelligence Inc.Safe Superintelligence Inc represents a significant AI safety organization founded by key OpenAI alumni with $3B funding and a singular focus on developing safe superintelligence, though its actual...Quality: 45/100OpenAIOrganizationOpenAIComprehensive organizational profile of OpenAI documenting evolution from 2015 non-profit to commercial AGI developer, with detailed analysis of governance crisis, safety researcher exodus (75% of ...
Analysis
AGI DevelopmentProjectAGI DevelopmentComprehensive synthesis of AGI timeline forecasts showing dramatic compression: Metaculus aggregates predict 25% probability by 2027 and 50% by 2031 (down from 50-year median in 2020), with industr...Quality: 52/100Capability-Alignment Race ModelAnalysisCapability-Alignment Race ModelQuantifies the capability-alignment race showing capabilities currently ~3 years ahead of alignment readiness, with gap widening at 0.5 years/year driven by 10²⁶ FLOP scaling vs. 15% interpretabili...Quality: 62/100
Key Debates
When Will AGI Arrive?CruxWhen Will AGI Arrive?Comprehensive survey of AGI timeline predictions ranging from 2025-2027 (ultra-short) to never with current approaches, with median expert estimates around 2032-2037. Key cruxes include whether sca...Quality: 33/100
Concepts
AnthropicOrganizationAnthropicComprehensive profile of Anthropic, founded in 2021 by seven former OpenAI researchers (Dario and Daniela Amodei, Chris Olah, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish) with early funding...OpenAIOrganizationOpenAIComprehensive organizational profile of OpenAI documenting evolution from 2015 non-profit to commercial AGI developer, with detailed analysis of governance crisis, safety researcher exodus (75% of ...Scientific Research CapabilitiesCapabilityScientific Research CapabilitiesAI scientific research capabilities have achieved performance exceeding human experts in specific domains (AlphaFold's 214M protein structures, GNoME's 2.2M materials in 17 days versus estimated 80...Tool Use and Computer UseCapabilityTool Use and Computer UseTool use capabilities achieved superhuman computer control in late 2025 (OSAgent: 76.26% vs 72% human baseline) and near-human coding (Claude Opus 4.5: 80.9% SWE-bench Verified), but prompt injecti...Quality: 67/100Reasoning and PlanningCapabilityReasoning and PlanningComprehensive survey tracking reasoning model progress from 2022 CoT to late 2025, documenting dramatic capability gains (GPT-5.2: 100% AIME, 52.9% ARC-AGI-2, 40.3% FrontierMath) alongside critical...Quality: 65/100Large Language ModelsCapabilityLarge Language ModelsComprehensive analysis of LLM capabilities showing rapid progress from GPT-2 (1.5B parameters, 2019) to o3 (87.5% on ARC-AGI vs ~85% human baseline, 2024), with training costs growing 2.4x annually...Quality: 60/100
Models
AI Risk Activation Timeline ModelModelAI Risk Activation Timeline ModelComprehensive framework mapping AI risk activation windows with specific probability assessments: current risks already active (disinformation 95%+, spear phishing active), near-term critical windo...Quality: 66/100AI Acceleration Tradeoff ModelModelAI Acceleration Tradeoff ModelQuantitative framework for evaluating how changes to AI development speed affect existential risk and long-term value. Models the marginal impact of acceleration/deceleration on P(existential catas...Quality: 50/100
Historical
Deep Learning Revolution EraHistoricalDeep Learning Revolution EraComprehensive timeline documenting 2012-2020 AI capability breakthroughs (AlexNet, AlphaGo, GPT-3) and parallel safety field development, with quantified metrics showing capabilities funding outpac...Quality: 44/100
Transition Model
AI CapabilitiesAi Transition Model FactorAI CapabilitiesThe aggregate advancement of AI system capabilities—including reasoning, autonomy, generality, and domain expertise. Higher capabilities amplify both benefits and risks.AI CapabilitiesAi Transition Model MetricAI CapabilitiesComprehensive tracking of AI benchmark performance 2020-2025 showing rapid saturation (MMLU: 43.9%→96.7%, HumanEval: 28.8%→96.3%, ARC-AGI: 9.2%→87.5%), with o3 achieving human-level reasoning. Crit...Quality: 61/100